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J .  Phys. A: Math. Gen. 18 (1985) 1309-1314. Printed in Great Britain 

Quantum kinematics and the Lie group structure of 
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Facultad de Fisica, Pontificia Universidad Catblica, Casilla 1 14-D, Santiago, Chile 

Received 20 August 1984 

Abstract. A formalism of quantum kinematics which rests on the regular representation 
of a Lie group is proposed. This representation leads to explicit canonical commutation 
relations for non-Abelian dynamical variables which, together with the Lie algebra, define 
the kinematic algebra. Generalised equations of motion for the group-parameter-dependent 
operators, as well as generalised wave equations, are introduced over the group manifold 
considered as a background arena. The formalism proposed affords a method of geometric 
quantisation stemming directly from the observed symmetries of a system. 

The recent trend in elementary particle theories, where several SU( n )  and other gauge 
groups play a fundamental role (Wilson 1974), sets the problem of quantising a system 
which is primarily described by "Abelian dynamical variables (Yamada 1982). In 
general this seems to be an unsolved problem of quantum kinematics because the 
conventional canonical commutation relations (i.e., cf equation ( 1) below) apply only 
to Cartesian coordinates and their conjugate Abelian momenta and not to general 
dynamical variables, and also because Weyl's (193 1) quantisation is not flexible enough 
for the purposes of physics (Daubechies 1983) since it contains the non-Abelian 
fundamental commutators only implicitly. The same problem also arises in connection 
with some recent attempts to generalise the theory of minimum-uncertainty states 
(Yamada 1982) to variables other than Cartesian (Carruthers and Nieto 1968, Nieto 
1967, Nieto et af 1981 and references quoted therein). The quantum kinematics of 
non-Abelian variables are also an indispensable device in the formulation of lattice 
gauge theories which circumvent conventional perturbation theory (Wilson 1974) in 
the search for the appropriate description of quark confinement (Kogut and Susskind 
1975, Creutz 1977, Kogut 1980). 

Quantum kinematics were successfully initiated by Weyl (1931) some fifty years 
ago. Weyl's most interesting achievement in this respect was his discussion of Heisen- 
berg's kinematics as an Abelian group of unitary transformations. Indeed, Weyl's 
deduction of the fundamental commutation rule 

[Q", Pb]=ih8t  (1) 
(from the assumed space translation symmetry) still remains as almost the unique 
contribution of quantum kinematics which rests on firm ground, apart from the relevant 
Lie algebras and their general representations. 

This paper is a brief report of work in progress concerning non-Abelian quantum 
kinematics. Although our results are not exemplified in this paper and are thus purely 

0305-4470/85/091309 + 06$02.25 0 1985 The Institute of Physics 1309 



1310 J Krause 

formal (in fact, they belong to the general formalism of quantum mechanics), we hope 
that they may be of some interest for people working in the foundations and possible 
generalisations of quantum theory. Here we present some features of a general 
formalism of quantum kinematics which one obtains rather naturally when one con- 
siders the regular representation of a Lie group, whether Abelian or not. In this paper 
we show how a generalised wave mechanics may be defined over the group manifold 
itself. In particular, our approach may be a way out of the problem mentioned above 
since we obtain non-Abelian canonical commutators (cf equation ( 16) below) which 
can be evaluated systematically (by purely group-theoretical methods) for any given 
Lie group. The generalised commutation relations arise from the global symmetries 
of the system (in contrast to the Lie algebra commutators which arise only locally) 
and, moreover, they are not necessarily committed to (nor do  they presuppose) a 
canonical formalism attached to any sort of classical analogue. Clearly, for an Abelian 
group (as the group of space translations) equation (16) yields equation ( I ) .  This fact 
indeed represents the main motivation of the general approach to quantum kinematics 
as sketched in this paper. One expects that equation (16) will also set the general 
framework for having non-Abelian quantum mechanics, that is, for having a quantisation 
scheme resting on fundamental commutation relations for dynamical variables of any 
kind (not only Cartesian and Abelian). 

Let G denote an r-parameter Lie group which in some realisation is characterised 
by a set of r group multiplication functions (cf, e.g., Racah 1965): 
g y q " ,  . . . , q"; q ' , .  . . , q r )  = qIra, say, with a = 1, .  . . , r, and where the q correspond to 
essential parameters of G. We will denote by q = (q ' ,  . . . , q r )  a generic point of the 
group manifold M ( G ) .  For the sake of simplicity and in order to concentrate our 
attention on the main ideas, we handle only the identity component G, of G (i.e., 
G = G, henceforth). Then we define the regular representation U ( G )  of G by means 
of continuous matrices U ( q ) ,  q E M ( G ) ,  with matrix elements given by 

where po is an arbitrary constant, q', q" are also points in M ( G ) ,  6'"(q) denotes the 
r-fold Dirac delta and L(q') is the r x r determinant of 

(3) G ( q ' )  = lim d,g"(q'; q ) ,  
q - e  

e being the 'identity point' in M ( G ) .  In effect, it can be easily shown that 

where dpL(  q)  = p&'( q)  d q '  . . . dq' is the Hurwitz left-invariant measure of G (Weyl 
1931, Wigner 1959). 

Next, let H ( G )  be the Hilbert space which carries the (left) regular representation 
of G, and let {lq)} be a continuous complete basis of H ( G )  such that 

U4,44q) = (4'1 U(q)lq") (5) 

(414') = P*u'"q - q') (6) 

where, clearly, U(q)  are the linear operators of this representation. Thus one has 
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where I denotes the identity operator in H ( G ) .  Furthermore, one also obtains 

U(q)lq') = Ids; 9 ' ) )  (8) 

and, in particular, 

U(q)le) =Is). (9) 

Equation (8) shows neatly that we are handling the left regular representation of G. 
Finally, the identity 

L( 9") 6' 'J( q" - g ( q ; 4 ' ) )  = L( q ' )  S'" (  q' - g ( i j  ; 4 " ) )  

U i ( q )  = U - l ( q )  = U ( i j ) .  

(10) 

enables one to show that the operators U (  q )  of the regular representation are unitary: 

(11) 

Here we denote by i j  that point in M ( G ) ,  uniquely associated with the point q E M ( G ) ,  
such that g (q ;  4 )  = g ( i j ;  q )  = e  (Racah 1965). 

After these prolegomena we are ready to consider the quantum kinematics associated 
with the regular representation U (  G). First we formally introduce generalised 
'position' operators on the group manifold by means of the following spectral rep- 
resentation: 

0" = J- dk(q)lq)q"(ql .  (12) 

These are commuting Hermitian operators such that Q"/q )  = q"!q)  and so they provide 
us with a complete set of compatible observables in H ( G ) .  Of course, we also consider 
the infinitesimal generators Pa of U ( G )  defined by U(e+ S q )  = I - (i/h)Gq"P, as usual. 
These are Hermitian operators obeying the Lie algebra associated with U ( G ) ,  say 

and which play the role of generalised 'momentum' operators on M ( G ) .  The Lie 
algebra is the only piece of information one usually takes into account in the current 
approach to non-Abelian quantum kinematics. The formalism, however, is much richer 
than this, since the set I Q 1 , .  . . , Q';  PI,. . . . , P,}, and not just {PI,. . . , P,}, is the 
irreducible set of observables which defines the quantum model associated with G. 

Indeed, if we study the kinematics of the operators Q", that is, the (active) 
transformation law 

6Yq) = U ' ( q ) Q " U ( q ) ,  (14) 

we find 

oa(d = I dl*L(q')Iq')g"(q; q ' ) ( q ' !  = g"(q ;  0). (15)  

Therefore a straightforward calculation yields the generalised commutation rule 

[Q",  & I =  ihRXQ) (16) 
where the Hermitian operators R:(Q) ,  a, b = 1,. . . , r, have the spectral representation 

(17) 
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with 

R;(q) = lim dbgn(q ’ ;  4 ) .  
4 - e  

The R ; ( q )  are the elements of the right-transport matrix for contravariant vectors from 
the identity point e to the point q in the global affine space M ( G ) .  ( In  the same 
manner, the L;(q)  defined in equation (3 )  correspond to left transport.) In this way 
we also get (cf equation ( 8 ) )  

p a  I 4 )  = ih R ! ( 4 ) a b  I 4 ). (19) 

This result is interesting for it generalises the usual (i.e., Abelian) Fourier mapping 
Pa + -ihd, to the non-Abelian case: Pa + -ihR:(q)db. Once the group multiplication 
functions g ” ( q ’ ;  q )  for the essential parameters of a Lie group G are known, the 
canonical commutators stated in equation (16) can be evaluated easily. Of course, for 
an  Abelian Lie group one has R;(q) = L ; ( q )  = 8 ;  and thus equation (16) becomes 
equation ( I )  as required. 

For the kinematics of the generalised ‘momentum’ operators, namely 

P o  (9 ) = U’( 4 )  P a  U (  9) 3 

k ( q )  = R 3 9 ) L ; ( q ) P c  (21) 

(20) 

one gets 

with L t ( q ) L : ( q )  = 8: (from which the Lie algebra follows). 
Finally, we observe that the operators Q“ and Pa are completely independent of 

q ;  in this sense, they belong to the ‘Schrodinger picture’ of the kinematics. On the 
other hand, the q-dependent operators @ ( q )  and Fa(q)  belong to the ‘Heisenberg 
picture’. Furthermore, it can be shown that 

(22) 

(23) 

We interpret these equations as the generalised equations of ‘motion’ of the q-dependent 
operators with respect to the parameter space M ( G )  considered as a background arena. 
In the same way, we interpret the equations 

(24) 

as the generalised ‘wave equations’ of quantum kinematics on M ( G ) .  
We end this paper with some remarks. First we observe that quantum kinematics 

afford a theoretical basis for having non-Abelian ‘wave mechanics’ over the group 
manifold ( Q  representation). Equation (19) (cf equation (24)) completes the Q rep- 
resentation while equation ( 16) states the fundamental commutators of the regular 
U ( G )  kinematics. Equations (22) and (23) are completely analogous to the Heisenberg 
equations of motion of the ordinary theory and represent a direct generalisation of it. 
In the same spirit, equations (24) are a direct generalisation of Schrodinger’s time- 
dependent equation. It is important to remark, however, that in quantum kinematics 
one treats all variables (i.e., all group parameters) on the same footing and therefore 
time is not a preferred parameter. 

One should not misinterpret the possible physical meaning of the kinematics, since 
in the applications it may be intimately related to quantum dynamics. In effect, it is 
clear that for any well defined isolated system the group G must include all the (external 

R ; ( 4 ) d c O a  ( 4 )  = (i/h)[ k (41, Gn (411 

R;(q NCk ( 4 )  = ( i /  h ) [ k ( q  1, k (411. 

Rt(q)ab(q14) = (i/h)(ql pa I 4)  



Lie group structure of non-Abelian quantum mechanics 1313 

and internal) symmetries of the system. But then, in flat spacetime theories for instance, 
the PoincarC group must be a subgroup of G and thus the kinematics distinguish the 
Hamiltonian operator from the other Q and P operators as the generator of time 
translation invariance. Plainly so. The main point, however, is that the Hamiltonian 
appears to be related automatically to the other operators of the kinematics by means 
of the set of commutators (the kinematic algebra) arising not only from the Lie algebra 
but also from the global affine structure of the group manifold. Indeed, it is the whole 
symmetry group G, not only the Hamiltonian, that operates as the basic ingredient of 
the outcoming quantum model. Therefore it seems worthwhile to examine whether 
the kinematic equations of motion (cf equations (22), (23) and (24)) have some 
dynamical meaning, at least for those physical systems which manifest empirically the 
symmetries inherent to the adopted model group G. This approach may be especially 
useful for high-energy physics where classical analogues are missing or rather difficult 
to guess. Moreover, a closer investigation regarding the dynamical contents of sym- 
metry groups in mechanics (Mariwalla 1975, Aguirre and Krause 1984a, b) would be 
desirable. 

In summary, it seems possible to reinterpret quantum kinematics as a programme 
of geometric quantisation stemming directly from the observed symmetries of a system. 
Although there are several contributions following this idea in the current literature 
(Aldaya and Azcirraga 1982, Prosser 1983 and references therein), this author has 
been unable to find a discussion of non-Abelian kinematics as introduced in this paper. 
In particular, the formalism proposed includes (and looks simpler than) Weyl’s quanti- 
sation approach and also differs substantially from the traditional methods of geometric 
quantisation of Souriau (1970), Kostant (1970) and others (Simms and Woodhouse 
1976). 

Details and applications of non-Abelian quantum kinematics will be published 
elsewhere. 
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